A correlation-based algebraic transition model

Author:

Cakmakcioglu Samet Caka1ORCID,Bas Onur2,Kaynak Unver1

Affiliation:

1. Mechanical Engineering Department, TOBB University of Economics and Technology, Ankara, Turkey

2. Turkish Aerospace Industries, Ankara, Turkey

Abstract

A correlation-based algebraic transition model that relies on local flow information is proposed. The model is qualified as an algebraic model, or a zero-equation model since it includes an intermittency function in place of an intermittency equation that is found in one- or two-equation models. The basic idea behind the model is that, instead of deriving new equations for intermittency transport, existing transport terms of the Spalart–Allmaras (S-A) turbulence model can be used. To this end, the production term of the S-A model is multiplied with the proposed intermittency function γBC; thereby the turbulence production is damped until it satisfies some turbulence onset requirements. The proposed formulation also depends on local information that uses empirical correlations to detect the transition onset using less equations and less calibration constants than other higher order models. The model is first validated against some widely-used zero and variable pressure gradient flat plate test cases with quite successful results. Second, the model is employed for some low Reynolds number airfoil cases with very promising results. Third, the model is applied for a turbine cascade case with success. Finally, two different three-dimensional wing flow cases were calculated under transonic and low subsonic flow conditions. To this end, the DLR-F5 wing subject to a transonic Mach number of 0.82 and the low-speed NREL wind turbine flow case are simulated and good agreement with experiments are observed. The results indicate that the proposed model may become an alternative for other models as it uses less computational resources with equivalent or higher accuracy characteristics that is quite advantageous for the computational fluid dynamics design in industry.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3