Nonlinear vibration of a nanocomposite laminated piezoelectric trapezoidal actuator in subsonic airflow under combined electrical and forcing excitations

Author:

Noroozi Marziye1,Bakhtiari-Nejad Firooz12

Affiliation:

1. Mechanical Engineering Department, Amirkabir University of Technology, Tehran, Iran

2. University of Maryland, Baltimore, MD, USA

Abstract

The nonlinear dynamic and vibration behaviors of a cantilevered carbon nanotube-reinforced composite trapezoidal plate with two surface-bonded piezoelectric layers as an actuator in micro air vehicles are considered in this article. The plate is reinforced by single-walled carbon nanotubes and is exposed to subsonic airflow under combined parametric and external excitations. The large deflection von Karman plate assumptions and the classical laminated plate theory are applied to derive the governing equations of the motion of the piezoelectric nanocomposite laminated trapezoidal plate by using Hamilton's principle. The geometry of the trapezoidal plate is mapped into a rectangular computational domain. The Galerkin's approach is used for transforming the nonlinear partial differential equations of motion into nonlinear two-degrees-of-freedom ordinary differential equations of cubic nonlinearities. The case of 1:3 internal resonance and primary resonance is considered, and the multiple scales method is employed. The aerodynamic pressure distribution formula is modeled by linear potential flow theory. The frequency and time history responses and phase portrait in free forced vibrations are obtained to analyze the nonlinear dynamic behavior of the plate. The effects of different parameters such as the plate geometry, volume fraction of carbon nanotubes, and different excitations on the nonlinear vibration of the thin laminated plate are also discussed. A complex softening nonlinearity with two peaks in the higher mode is observed in frequency response curves. The influence of electrical excitation with several amplitudes and frequencies on dynamic stability is investigated using time response curves.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3