Flexoelectric control of beams with atomic force microscope probe excitation

Author:

Zhang Xufang1ORCID,Yu Wen1,Fu Jiahong1,Tzou Hornsen23

Affiliation:

1. School of Engineering, Zhejiang University City College, Hangzhou, PR China

2. Interdisciplinary Research Institute of Aeronautics and Astronautics, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, PR China

3. State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, PR China

Abstract

Based on the converse flexoelectric effect, flexoelectric actuator is designed and used to control the dynamic displacement of cantilever beams. First, shell-type stress expression based on double-curvature shell induced by the converse flexoelectric effect is developed, which can be simplified to a flexoelectric-laminated cantilever beam by applying two Lamé parameters and beam radius of curvature. Then, the flexoelectric actuator is designed with a conductive atomic force microscope probe and a flexoelectric layer. An inhomogeneous electric field is generated when the external voltage is applied on the atomic force microscope probe and the flexoelectric layer, which leads to stress in the longitudinal direction of beam and control moment. With the flexoelectric-induced bending moment, displacement induced by the external force and flexoelectric actuator is derived. The displacement is related to many parameters, such as actuation voltage, atomic force microscope probe radius and flexoelectric layer thickness. Cases are studied to optimize the control effect with different parameters. Results show that vibration control effect is enhanced with a higher actuation voltage and a smaller atomic force microscope probe radius for each mode. Besides, the thicker flexoelectric layer enhances the control effect with a larger bending moment arm for each mode. Dynamic vibration is controlled effectively by converse flexoelectric effect.

Funder

Natural Science Foundation for Young Scientists of Zhejiang Province

National Natural Science Foundation of China

State Key Laboratory of Mechanics and Control of Mechanical Structures

Self-Declaration Project of Social Development Research in Hangzhou

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3