Nonlinear stability analysis and numerical continuation of bifurcations of a rotor supported by floating ring bearings

Author:

Amamou Amira1ORCID

Affiliation:

1. Laboratory of Mechanical engineering, National Engineering School of Monastir; University of Monastir, Tunisia

Abstract

Floating ring bearings have been widely used, over the last decades, in rotors of automotive turbochargers because of their improved damping behavior and their good emergency-operating capabilities. They also offer a cost-effective design and have good assembly properties. Nevertheless, rotors with floating ring bearings show vibration effects of nonlinear nature induced by self-excited oscillations originating from the bearing oil films (oil whirl/whip phenomena) and may exhibit various nonlinear vibration effects which may cause damage to the rotor. In order to investigate these dynamic phenomena, this paper has developed a nonlinear model of a perfectly balanced rigid rotor supported by two identical floating ring bearings with consideration of their vibration behavior mainly governed by fluid dynamics. The dimensionless hydrodynamic forces of floating ring bearings have been derived based on the short bearing theory and the half Sommerfeld solution. Using the numerical continuation approach, different bifurcations are detected when a control parameter, the journal speed, is varied. Depending on the system’s physical parameters, the rotor can show stable or unstable limit cycles which themselves may collapse beyond a certain rotor speed to exhibit a fold bifurcation. Bifurcation analysis is performed to investigate the occurring instabilities and nonlinear phenomena. Such results explain the instabilities characteristics of the floating ring bearing in high-speed applications. It has also been found that the selection of the bearing modulus plays an important role in the characterization of the rotor stability threshold speed and bifurcation sequences. An understanding of the system’s nonlinear behavior serves as the basis for new and rational criteria for the design and the safe operation of rotating machines.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3