Thermo-stress coupling field of friction lining during high-speed slide of wire rope in a mine friction-drive hoist

Author:

Peng Yu-xing12,Zhu Zhen-cai1,Tong Min-ming2,Chen Guo-an1,Cheng Yan-hai1,Li Tong-qing1,Li Yi-lei1,Ma Wan1,Wang Chong-qiu1,Liu Bin-bin1

Affiliation:

1. School of Mechanical and Electrical Engineering, China University of Mining and Technology, People’s Republic of China

2. School of Information and Electrical Engineering, China University of Mining and Technology, People’s Republic of China

Abstract

In order to seek the intrinsic reason for the serious high-speed slide accident in a mine hoist, the thermo-stress coupling field of friction lining was studied during the high-speed slide. First, the helical contact characteristics were analysed. Subsequently, the thermomechanical properties and the dynamic coefficient of linear expansion were studied, and the thermomechanical constitutive relation was obtained. Then, the theoretical model of thermo-stress was established with the consideration of the helical contact characteristics and the thermomechanical constitutive relation. Also, the numerical simulation was performed by the finite element analysis. Finally, the experiment was carried out on a friction tester. It is found that the temperature is the highest at the contact zone II and the friction heat focuses on the contact surface layer. The variation frequency of the stress is 6.98 Hz at 0.5 m/s. Besides, the catastrophe for the strain and coefficient of friction occurs at 3 m/s. The thermo-stress concentration occurs at contact zone II. The experiment results agree with the simulation ones, which validates the theoretical model of thermo-stress.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3