Affiliation:
1. School of Mechanical and Electrical Engineering, China University of Mining and Technology, People’s Republic of China
2. School of Information and Electrical Engineering, China University of Mining and Technology, People’s Republic of China
Abstract
In order to seek the intrinsic reason for the serious high-speed slide accident in a mine hoist, the thermo-stress coupling field of friction lining was studied during the high-speed slide. First, the helical contact characteristics were analysed. Subsequently, the thermomechanical properties and the dynamic coefficient of linear expansion were studied, and the thermomechanical constitutive relation was obtained. Then, the theoretical model of thermo-stress was established with the consideration of the helical contact characteristics and the thermomechanical constitutive relation. Also, the numerical simulation was performed by the finite element analysis. Finally, the experiment was carried out on a friction tester. It is found that the temperature is the highest at the contact zone II and the friction heat focuses on the contact surface layer. The variation frequency of the stress is 6.98 Hz at 0.5 m/s. Besides, the catastrophe for the strain and coefficient of friction occurs at 3 m/s. The thermo-stress concentration occurs at contact zone II. The experiment results agree with the simulation ones, which validates the theoretical model of thermo-stress.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献