Effect of bearing thermally induced preload on the efficiency of automotive manual transmission under RDE

Author:

Laderou A1,Mohammadpour M1ORCID,Theodossiades S1ORCID,Wilson A2,Daubney R2

Affiliation:

1. Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, UK

2. Ford Engineering Research Centre, Dunton, Essex, UK

Abstract

In order to calculate the efficiency of an automotive manual transmission, taking into consideration the effect of its most power consuming components – gears and bearings – as well as the interactions between them is of high importance. In this paper, a dynamic model has been developed which can predict the frictional losses of a complete gearbox as a system and, thus, its efficiency. The effect of temperature on bearing preload is also considered and taken into account from a system perspective identifying its effect on the bearings frictional losses (as well as the overall efficiency). The operating conditions used are snapshots of the Real Driving Emissions driving cycle, which is a standard metric for automotive manufacturers. Results show that doubling the temperature can lead to 120% increase of the bearing losses and up to 140% increase of the total transmission losses. The effect of the variation of operating conditions (velocity and torque) is also taken into account. The novelty of this paper lays in the development of a dynamic model which takes into account the performance of a complete gearbox under transient operating conditions, as well as the interaction among its main components and the ability to make changes on the influencing factors of transmission efficiency so that their effect on the complete gearbox efficiency can be tracked. This has not been yet reported in the relevant literature which mainly focuses on the influencing factors of transmission power loss and efficiency experimental measurements under various operating conditions for gear pairs instead of complete gearboxes.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3