Fluid flow analysis of a turbulent offset jet impinging on a wavy wall surface

Author:

Singh Tej Pratap1,Kumar Amitesh2ORCID,Satapathy Ashok Kumar1

Affiliation:

1. Department of Mechanical Engineering, National Institute of Technology, Rourkela, India

2. Department of Mechanical Engineering, Indian Institute of Technology (BHU), Varanasi, India

Abstract

The fluid flow characteristics of a turbulent offset jet impinging on a wavy wall surface has been investigated numerically. Two-dimensional Reynolds-averaged Navier–Stokes (RANS) equations are solved by the finite volume method. In the governing differential equations, the convective and diffusive terms are discretized by the power law upwind scheme and second-order central difference, respectively. The semi-implicit method for pressure linked equation algorithm is utilized to link the pressure to the velocity. The offset ratio is set to 7.0 and the Reynolds number is fixed to 15,000. The width of the jet is taken as the characteristic length. The amplitude of the wavy wall surface is varied from 0.1 to 0.7 with an interval of 0.1 and the number of cycle is fixed to 10. The results of fluid flow and turbulent characteristics of the offset jet are presented in the form of contours of streamline, velocity vector, turbulent kinetic energy, dissipation rate, pressure, and Reynolds shear stress. The variation in integral constant of momentum flux, wall shear stress, and pressure along the wall is presented and also compared. The decay in the maximum streamwise velocity in the downstream direction and jet half-width along the streamwise direction are also presented and discussed. The wavy surface introduces some remarkable features, which are not present in a normal plane wall case. These features have been discussed in detail.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3