Effects of different cooling conditions on friction stir processing of A356 alloy: Numerical modeling and experiment

Author:

Akbari Mostafa1ORCID,Asadi Parviz2

Affiliation:

1. Department of Mechanical Engineering, Technical and Vocational University (TVU), Tehran, Iran

2. Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University, Qazvin, Iran

Abstract

In the present work, the effects of in-process cooling are investigated on the material flow, temperature distribution, axial force, wear resistance, and microstructural and mechanical properties of friction stir processed (FSPed) Al-Si aluminum alloy. The finite element method (FEM) was developed for modeling the process, based on the eulerian-lagrangian technique, and then verified by the experimental force and temperature histories. Next, the material flow and temperature distribution during the friction stir process (FSP) with in-process cooling under different conditions were considered. After that, the experimental investigations, including the optical microscopy, hardness, and wear tests, were conducted. Finally, the stir zone (SZ) shape obtained by experiments and simulation model were compared for the FSPed samples without cooling and with air cooling. The material flow achievements reveal that using a coolant affects the material flow in the pin-driven zone more significantly than in the shoulder-driven zone, leading the SZ to change from the basin shape into the V shape. The SZ shapes obtained from the experiments and the simulation model show a good agreement between the shapes of the samples FSPed without cooling and with air cooling. Moreover, experimental results showed that using in-process cooling reduces Si particles' size and thus significantly increases the hardness and wear resistance. The Si particles size is reduced from 10 μm in the base metal to 2.6 μm and 2 μm in the air-cooled and water-cooled samples. Consequently, the wear mass loss reduced almost 28% and 40%, and hardness increased almost 35% and 80% for the air-cooled and water-cooled samples compared to the processed samples without coolant.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3