Numerical investigation of surface roughness effect on pool boiling heat transfer of Al2O3/water nanofluid

Author:

Mousavi Fatemeh1,Adibi Pouyan1ORCID,Abedini Ehsan1

Affiliation:

1. Department of Mechanical Engineering, Faculty of Engineering, University of Hormozgan, Bandar Abbas, Iran

Abstract

This study examined the effect of surface roughness on the pool boiling heat transfer coefficient of pure water and water-alumina nanofluid with 0.1% and 0.01% volume concentration using computational fluid dynamics on the surface of a stainless-steel cylinder. The effect of nanoparticles was checked by averaging the thermophysical properties in the equations of the flow field with boiling. Simulations were performed for initial surface roughnesses from 0.1 to 0.8 µm. Furthermore, the presence of nanoparticles would make their deposition on the heated surface and change the surface properties. Thus, once again simulations were performed for roughness with the same values but because of the deposition of nanoparticles. In doing so, two separate equations were used for the nucleation site density parameter. Ultimately, the results obtained from both types of roughness were compared. The results indicated that with an increase in the roughness, the boiling heat transfer coefficient increased. Further, at the same roughness, the boiling heat transfer rate of the deposited surface decreased for nanofluid of 0.01% vol and increased for nanofluid of 0.1% vol compared to the non-deposited surface. For pure water at 0.8 µm roughness, the sediment improved heat transfer but it reduced heat transfer for 0.4 µm and lower roughness.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3