Surface integrity and fatigue behavior of AISI 4340 steel after hybrid laser-ultrasonic assisted ball burnishing process

Author:

Khodabandeh Alireza1ORCID,Sayadi Daniyal1ORCID,Rajabi Sajjad1,Khosrojerdi Mohammadreza1,Khajehzadeh Mohsen1ORCID,Razfar Mohammad Reza1ORCID

Affiliation:

1. Department of Mechanical Engineering, Amirkabir University of Technology, Tehran, Iran

Abstract

The final surface modification processes enhance the fatigue strength, wear resistance, and corrosion resistance of the workpiece by improving the surface quality, enhancing the microhardness, generating compressive residual stresses on the surface, and creating favorable changes in the microstructure. In this regard, using processes with different mechanisms is regarded as an optimal method to increase the efficiency of the final surface modification processes. This research seeks to experimentally investigate the hybrid laser-ultrasonic assisted ball burnishing (LUAB) process and its effect on the surface integrity and fatigue strength of 4340 alloy steel. The effect of the process on the sample’s microstructure was evaluated by the images obtained from the optical microscope and SEM. Further, the parameters of mean surface roughness and microhardness, as well as the results of the uniaxial tensile test and fatigue test of the workpiece were evaluated. In the case of using appropriate parameters in the process, the results indicated a 93.38% reduction in mean surface roughness and an increase of surface microhardness by 3.4 times compared to the initial sample. Additionally, the investigation of microstructure revealed the accessibility of homogeneous and refinement martensitic structures without surface melting. The results of uniaxial tensile and fatigue tests indicated a 6.29% increase in tensile strength and a 20.71% increase in the endurance limit of the treated sample (LUAB) compared to the initial sample. Finally, the results also showed a change in the fracture mode in the uniaxial tensile test and a reduction in the final fracture area in the fatigue test.

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3