A new thin beam element with cross-section distortion of the absolute nodal coordinate formulation

Author:

Shen Zhenxing1ORCID,Xing Xiaofeng1,Li Boyu1

Affiliation:

1. Key Laboratory of Mechanical Reliability for Heave Equipment and Large Structures of Hebei Province, School of Civil Engineering and Mechanics, Yanshan University, Qinhuangdao, China

Abstract

A novel modelling approach to beams with thin cross-sections is proposed in the absolute nodal coordinate formulation (ANCF), where the Lagrange interpolating and curve fitting techniques of numerical analysis are utilized for construction of the thin beam cross-section contour. Although the slope vector with respect to the coordinate line on cross-section contour is not considered in nodal coordinates, the cross-section distortion could be adequately captured through selecting an appropriate degree of polynomial. The main advantages of the present ANCF thin beam element are that the computational costs are more inexpensive than the ANCF shell element due to less generalized coordinates, there is very small amount of input data because slope vectors of the cross-section are eliminated, and the cross-sectional stress distribution may always be continuous on account of the fact that the cross-section is not discretized into a set of finite elements. Moreover, the formulations of elastic forces and Jacobian of thin laminated composite beam are also derived based on the continuum mechanics. Finally, several examples including both static and dynamic problems are performed to verify the new element and meanwhile demonstrate its general characteristics.

Funder

Natural Science Foundation of Hebei Province of China

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3