Experimental investigation on thermal behavior of non-boiling slug and bubbly two phase-flow in helical tube with spiral

Author:

Rezazadeh Reza1,Jafarmadar Samad1ORCID,Khorasani Saleh1,Niaki Seyed Reza Amini2ORCID

Affiliation:

1. Faculty of Mechanical Engineering, Urmia University, Urmia, Iran

2. Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan

Abstract

The present study provides experimental results of the flow pattern and thermal behavior of a none-boiling air-water two-phase flow in a helical tube with a turbulator. In order to evaluate the thermal behavior, a glass tube was put under constant heat flux. The inlet, outlet, and surface temperature of the helical tube were measured to calculate the heat transfer coefficient. The results showed that the addition of the turbulator in the helical tube leads to a rapid conversion from bubble flow to slug flow. Also, the formed bubbles are much smaller and spread radially throughout the pipe. Findings showed that the turbulator significantly improved the heat transfer of the two-phase flow, in which ratios of heat transfer enhancement with and without turbulator is 28% and 19%, respectively. Finally, cost-to-benefit ratio (C.B.R) analysis confirmed that when air-water two-phase flow transits through the helical tube are not affected by the presence or absence of turbulator.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3