Rock hardness identification based on optimized PNN and multi-source data fusion

Author:

He Ying123ORCID,Tian Muqin12ORCID,Song Jiancheng12,Feng Junling12

Affiliation:

1. National & Provincial Joint Engineering Laboratory of Mining Intelligent Electrical Apparatus Technology, Taiyuan University of Technology, Taiyuan, China

2. Shanxi Key Laboratory of Mining Electrical Equipment and Intelligent Control, Taiyuan University of Technology, Taiyuan, China

3. School of Electric Power, Civil Engineering and Architecture, Shanxi University, Taiyuan, China

Abstract

To solve the problem that it is difficult to identify the cutting rock wall hardness of the roadheader in coal mine, a recognition method of cutting rock wall hardness is proposed based on multi-source data fusion and optimized probabilistic neural network. In this method, all kinds of cutting signals (the vibration signal of cutting arm, the pressure signal of hydraulic cylinders and current signal of cutting motor) are analyzed by wavelet packet to extract the feature vector, and the multi feature signal sample database of rock cutting with different hardness is established. To solve the problems of uncertain spread and complex network structure of probabilistic neural network (PNN), a PNN optimization method based on differential evolution algorithm (DE) and QR decomposition was proposed, and the rock hardness was identified based on multi-source data fusion by optimizing PNN. Then, based on the ground test monitoring data of a heavy longitudinal roadheader, the method is applied to recognize the cutting rock hardness, and compared with other common pattern recognition methods. The experimental results show that the cutting rock hardness recognition based on multi-source data fusion and optimized PNN has higher recognition accuracy, and the overall recognition error is reduced to 6.8%. The recognition of random cutting rock hardness is highly close to the actual. The method provides theoretical basis and technical premise for realizing automatic and intelligent cutting of heading face.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3