A new indexing motion program for optimum designs of Geneva mechanisms with curved slots

Author:

Lin WY1,Tsai YH2,Hsiao KM2

Affiliation:

1. Department of Mechanical Engineering, De Lin Institute of Technology, New Taipei City, Taiwan, ROC

2. Department of Mechanical Engineering, National Chiao Tung University, Hsinchu City, Taiwan, ROC

Abstract

A curved slotted Geneva mechanism can eliminate the adversely infinite angular jerks of the Geneva wheel and might reduce the peak angular acceleration of the Geneva wheel by using a proper indexing motion program. In the literature, the cycloidal, fifth-order polynomial and modified sine indexing motion programs are frequently used for curved slotted Geneva mechanisms. To achieve the better kinematic performance of the curved slotted Geneva wheel than that obtained using the above-mentioned indexing motion programs, a new indexing motion program based on the Hermite interpolating polynomial is proposed for an optimum design with the goals of minimizing the peak angular acceleration and eliminating the adversely infinite angular jerks. The domain of the indexing position function is divided into several segments. Each segment is termed an element, and both ends of each segment are termed nodes. The nodal values of the indexing position function and its derivatives are used as design variables. The position function for each element can be described using the Hermite interpolating polynomial and the design variables. The reason behind the use of the Hermite interpolating polynomial is that the design variables have the clear physical meanings. The four-level Hermite interpolating polynomial is used and two elements are sufficient to obtain the optimum results. In addition, the constraint regarding the radius of curvature of the profile of the inner slot is proposed to prevent sharp curvature of the profile of the inner slot. The findings show that there is a decline in the peak acceleration of the Geneva wheel with six curved slots for the optimum results obtained using the proposed indexing motion program by 33.4% and 24.3%, respectively, as compared with the cycloidal and modified sine indexing motion programs.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3