A genetic algorithm-based computed torque control for slider–crank mechanism in the ship’s propeller

Author:

Farzadpour Farsam1,Faraji Hossein1

Affiliation:

1. Young Researchers and Elite Club, Khomeinishahr Branch, Islamic Azad University, Isfahan, Iran

Abstract

A lot of endeavors regarding the development of slider–crank mechanism in the ship’s propeller have been made and continue to be investigated. This paper presents the position control of a slider–crank mechanism, which is driven by the piston cylinder actuator to adjust the blade pitch angle. An effective motion control strategy known as the computed torque control can ensure global asymptotic stability. However, it is essential for this control scheme to have a precise and accurate system model. Moreover, large amounts of changes in the output and even instability of process are caused by a small amount of measurement or process noise, when the derivative gain is sufficiently large. Accordingly, in order to compensate any parameter deviation and disturbances as well as minimizing errors, we have presented a genetic algorithm-based computed torque control system which adjusts the proportional-derivative gains. Computer simulations are performed which reveals that asymptotically stability is reached and it confirms the effectiveness and high tracking capability of the proposed control scheme.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3