Combat helmet liner design for blunt impact absorption using multi-output Gaussian process surrogates

Author:

Barlow George J1,Page Christopher1,Drane Patrick1ORCID,Stapleton Scott E1,Fasel Benjamin2,Inalpolat Murat1ORCID

Affiliation:

1. Department of Mechanical Engineering, University of Massachusetts, Lowell, MA, USA

2. US Army Combat Capabilities Development Command Soldier Center (CCDC SC), Natick, MA, USA

Abstract

A finite element based computational model simulating the standard drop tower test for military helmets was created and used in conjunction with a multi-output Gaussian process surrogate to seek different designs of helmets for improved blunt impact performance. Experimental drop test results were used for the validation of the model’s ability to simulate impact. The influence of foam stiffness, impact velocity, strap tension, as well as pad placement and size on parameters on the peak linear acceleration (PLA) of the headform was investigated for the first time through a surrogate model trained by strategically choosing simulation points. Impact velocity was found to have the greatest effect. The strap tension and foam pad stiffness ranges examined within this sampling plan were found to have less of an effect on the performance of the helmet than the pad size and shape parameters examined. The surrogate modeling approach was used to quantify the influence of design parameters and can lead to not only improved helmet designs but also new data-driven design metrics and testing standards to accelerate the development of TBI-mitigating helmets.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3