Free vibration analysis of large deformed curved beam incorporating rotary inertia and shear deformation effects and its experimental validation

Author:

Ghuku Sushanta1ORCID,Saha Kashinath1ORCID

Affiliation:

1. Department of Mechanical Engineering, Jadavpur University, Kolkata, India

Abstract

The paper theoretically and experimentally analyzes free vibration characteristics of statically loaded moving boundary type curved beam considering rotary inertia and shear deformation effects. Effects of rotary inertia and shear deformation are observed for different thickness to span ratios of curved beam. The subject problem is decoupled into two interrelated problems: determining equilibrium configuration under static load and finding the corresponding free vibration frequency. The static problem is analyzed incrementally in body fitted curvilinear frame as it involves geometric nonlinearity due to generalized curvature, large deformation, and moving boundaries. Variational energy principle is employed to derive governing equation. The nonlinear governing equation associated with complicated boundary conditions is solved through iterative geometry updation. Once static problem is solved for current load step, governing equation for dynamic characteristics is derived using Hamilton’s principle. The governing equation gets linearized by using the static configuration, which finally yields a linear eigenvalue problem. Experiment is performed in a dedicated setup with two master leafs having different thickness to span ratios. The roller supported specimens are excited with an instrumented hammer and response signals are captured by accelerometers. The excitation and response signals are recorded using HBM-MX840B data acquisition system. Frequency response functions of the curved beam systems under different static loads are obtained from postprocessing of the dynamic signals in MATLAB®. First two natural frequencies of the specimens are noted from the experimental results and the corresponding theoretical results are generated. The specimens are also modeled in ABAQUS® CAE and finite element results are computed. Comparison between the theoretical, experimental, and finite element results validates the present model. The study also provides some meaningful observations on effects of rotary inertia and shear deformation. Based on the observations, more results are generated for different thickness to span ratios and findings are reported suitably.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3