Theoretical study and experimental measurement of the gas liquid two-phase flow through a vertical Venturi meter

Author:

Zeghloul Ammar12,Messilem Abdelkader1,Ghendour Nabil1,Al-Sarkhi Abdelsalam3,Azzi Abdelwahid1,Hasan Abbas4

Affiliation:

1. Faculty of Mechanical and Process Engineering, University of Sciences and Technology Houari Boumedien, Algiers, Algeria

2. Polytechnic National School, Algiers, Algeria

3. Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia

4. Faculty of Science and Engineering, University of Hull-Chemical Engineering, Hull, UK

Abstract

An accurate two-phase flow rate measurement is essential in many applications and industries such as; oil/gas, chemical, pipeline transportation and nuclear industry. This paper presents the findings obtained from two-phase flow rate measurements using Venturi meters coupled with conductance probe sensors. The measurement system and presented methodology can be used to directly and continuously measure the mass flow rate of gas-liquid flows without any need for using a separator. Most of the available data in literature on mass flow rate using Venturis in gas-liquid two phase flows are limited/valid to a certain flow regime. However, the experimental data presented in this paper covered a wide range of flows (i.e. bubbly, slug and churn flows). Three Venturis with different diameter ratios, β = 0.40, β = 0.55 and β = 0.75 have been employed using an air-water vertical test section. The effect of the Venturi’s geometry on the flow behaviour was also evaluated. The average void fraction and void fraction time series have been measured along the test section by nine different conductance probe sensors covering the convergent, throat and divergent sections. In addition, the two-phase pressure drop across the Venturi was measured. Moreover, a new correlation for the gas-liquid slip ratio was proposed in this paper, which is necessary for calculating the two-phase mass flow rate. The proposed slip ratio correlation showed more accuracy than the ones available in literature. It was found that the correlation proposed by Chisholm to predict the two-phase mass flow rate in Venturis with a diameter ratio, β = 0.55, shows the best accuracy among others such as; Murdock, Lin, James and Zhang correlations.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3