Stability and bifurcation analysis of the non-linear railway bogie dynamics

Author:

Uyulan Çağlar1ORCID,Gokasan Metin2,Bogosyan Seta2

Affiliation:

1. Istanbul Technical University, Graduate School of Science, Engineering and Technology, Department of Mechatronics Engineering, Istanbul, Turkey

2. Istanbul Technical University, Faculty of Electrical and Electronic Engineering, Control Engineering Department, Istanbul, Turkey

Abstract

It is a critical issue to maintain stability in high-speed railway vehicles and to ensure comfortable and safe driving. Multi-body models of railway vehicles have non-linear properties originated from the wheel–rail contact and characteristics of the suspension systems. The critical speed values at which the unstable oscillations and the amplitudes of the limit cycle-type vibrations take place vary by adjusting the design parameters; therefore, these effects on non-linear railway dynamics must be evaluated with a higher precision by using numerical and/or analytical methods to determine the bifurcation behavior. The main objective of this paper is to examine the non-linear phenomena in a railway bogie from a broad perspective, concentrating on non-linear analysis methods. Thus, non-linear equations of motion of a 12-degrees of freedom railway bogie involving dual wheelsets, non-linear wheel flange contact, heuristic non-linear creep model, and suspension system are solved in the time domain with small time steps by using ode23s (stiff/Mod.Rosenbrock) method. The critical speeds were calculated with respect to the effects of various lateral stiffness and damping coefficients. The bifurcation diagrams of the maximum lateral displacement of the leading wheelset were depicted within a wide speed range. In the case of the suspension parameter set where the subcritical/supercritical Hopf bifurcation takes place, the phase portraits and the symmetric/asymmetric oscillations of the leading wheelset at the critical speed were represented. The type of the Hopf bifurcation can be transformed from the subcritical state to the supercritical state by increasing the given suspension ratio. The Lyapunov exponents of the lateral displacement, lateral velocity, yaw angular displacement, and yaw angular velocity of the leading wheelset were evaluated above the critical speeds to examine chaotic motion. The effect of the suspension parameters on the non-linear dynamical behavior of the railway bogie at the stability limit and on the bifurcation type has been proved.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3