Investigating the elastic behavior of carbon nanocone reinforced nanocomposites

Author:

Ardeshana Bhavik A1,Jani Umang B1,Patel Ajay M1ORCID,Joshi Anand Y1

Affiliation:

1. Mechatronics Department, G.H. Patel College of Engineering and Technology, Vidyanagar, India

Abstract

This paper deals with the evaluation of the effective mechanical properties of carbon nanocone centered composites using a 3D nanoscale representative volume element based on continuum mechanics. For extracting the effective material constants, the authors have taken the basis of theories of elasticity. The results constituting the effective Young's modulus of the composite and Poisson's ratio for different parameters stated above have been presented and validated with rule of mixtures. It can be clearly visualized from the results that the load-carrying capacities of carbon nanocones in the representative volume elements are quite significant and the same has been demonstrated with subsequent cases. Simulation-based modeling can show a considerable part in the improvement of carbon nanocone-based composites by providing results that help in appreciative of the performance of composites. Moreover, for a volume fraction of the CNC as 2.33% in a cylindrical representative volume element and a 19.2° apex angle of the cone, the stiffness of the composite can increase as many as 4.9 times of the matrix. Similarly for hexagonal and square, the increase is in terms of 4.3 and 3.01 times respectively. Cylindrical representative volume element is the best as it provides the maximum reinforcement in terms of effective Young's modulus of the composite. Carbon nanocone-based composites provide results that help in understanding the elastic behavior of composites.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3