Impact performance analysis of a novel rubber-composite combat helmet

Author:

Jităraşu Octavian1,Lache Simona1,Velea Marian Nicolae1

Affiliation:

1. Department of Mechanical Engineering, Transilvania University of Braşov, Brasov, Romania

Abstract

Starting from the permanent need to ensure individual protection in case of impact with a projectile, this work presents a comparative analysis between the ballistic helmet used by the Romanian Armed Forces, made of steel and Kevlar, and a novel multilayer helmet proposed to be made of rubber and Kevlar fibers reinforced polyethylene. The impact behavior of the ballistic helmets is analyzed numerically, using the finite element method, from different perspectives, including the protective performance of the combat helmets and the kinetic energy of the projectile dissipated during the impact. The numerical model of the steel and Kevlar helmet is validated by ballistic tests, observing the projectile impact on the ballistic helmets. Results from the simulations and experiments show that the steel and Kevlar helmets are not able to resist a 7.62 mm bullet with a striking velocity of 690 m/s, while, according to the simulations, the novel multilayer helmet proposed is not penetrated by the projectile.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3