Multi-point and multi-objective optimization design method for industrial axial compressor cascades

Author:

Ju Y P1,Zhang C H1

Affiliation:

1. Department of Fluid Machinery and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China

Abstract

Modern aerodynamic optimization design methods for the industrial axial compressor cascade mainly aim at improving both design point and off-design point performance. In this study, a multi-point and multi-objective optimization design method is established for the cascade, particularly aiming at widening the operating range while maintaining good performance at the acceptable expense of computational load. The design objectives are to maximize the static pressure ratio and minimize the total pressure loss coefficient at the design point, and to maximize the operating range for the positive and negative incidences. To alleviate the computational load, a design of experiment (DOE)-based GA–BP-ANN model is constructed to rapidly approximate the cascade aerodynamic performance in the optimization process. The artificial neural network (ANN) is trained by the genetic algorithm (GA) technique and back propagation (BP) algorithm, where the training cascades are sampled by the DOE method and analysed by the computational fluid dynamics method. The multi-objective genetic algorithm is used to search for a series of Pareto-optimum solutions, from which an optimal cascade is found out whose objectives are all better than (ABT) those of the original design. The ABT cascade is characterized by the lower camber and higher turning angle, leading to better aerodynamic performance in a widened operating range. Compared with the original design, the ABT cascade decreases the total pressure loss coefficient by 1.54 per cent, 23.4 per cent, and 7.87 per cent at the incidences of 5°, −9°, and 13°, respectively. The established optimization design method can be extended to the three-dimensional aerodynamic design of axial compressor blade.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3