Multipoint design optimization for a controlled diffusion airfoil compressor cascade

Author:

Huang Song12ORCID,Yang Chengwu12,Han Ge1,Zhao Shengfeng12ORCID,Lu Xingen12ORCID

Affiliation:

1. Key Laboratory of Light-duty Gas-Turbine, Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing, China

2. University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China

Abstract

Under high altitude and low Reynolds number conditions, the aerodynamic performance of compressor cascades deteriorates drastically. In this paper, an optimally designed system combining class-shape-transformation method, S1 surface flow solver and whale optimization algorithm was established to achieve for a controlled diffusion airfoil, called MANGHH. The aim of this work is to improve our understanding of the loss mechanism for the original cascade and optimal cascade under different inflow conditions. The study shows that the total pressure loss of the optimal cascade at an angle of attack of −4°, 0°, and 6° decreases by 55.9%, 16.1%, and 16.3%, respectively, compared with the original controlled diffusion airfoil. The range of the available low loss incidence improves significantly. At different incidences, the optimal cascade moves the blade loading forward compared with that of the original controlled diffusion airfoil while reducing the growth rate of the boundary layer thickness, eliminating a wide range of flow separations. The optimal cascade reduces the total pressure loss mainly by reducing trailing edge mixing loss compared with that of the original controlled diffusion airfoil. Under different inlet Mach number conditions, a laminar separation bubble appears on the suction surface of the original controlled diffusion airfoil. As the inlet Mach number increases, the position of the laminar separation bubble moves slightly upstream, while the length and depth of the laminar separation bubble increase. Fortunately, the total pressure loss of the optimal cascade decreases significantly compared with that of the original controlled diffusion airfoil. Under different incoming turbulence intensity conditions, the total pressure loss of the optimal cascade is always lower than that of the original controlled diffusion airfoil. As the incoming turbulence intensity increases, the total pressure loss of the original controlled diffusion airfoil decreases first and then increases. However, the total pressure loss of the optimal cascade increases with increasing incoming turbulence intensity due to the improvement of the turbulence dissipation capacity.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3