Analysis of large-scale flow characteristics in a four-valve spark ignition engine

Author:

Li Y1,Zhao H1,Ladommatos N1

Affiliation:

1. Brunel University Mechanical Engineering Department Uxbridge, Middlesex, UK

Abstract

A digital particle image velocimetry (PIV) measurement has been carried out to study the large-scale flow characteristics in a single-cylinder engine with a production-type four-valve cylinder head under one intake port deactivation. The measurement plane was located 12 mm below the cylinder head parallel to the flat piston top. Two-dimensional velocity fields from 100 consecutive cycles were acquired at every 30 crank angle interval in the compression stroke to analyse ensemble-averaged mean velocity, cyclic variation of the swirl motion, low-frequency and total velocity fluctuations and their integral length scales. The analysis shows that as one intake port is deactivated, strong swirl forms at the end of the intake stroke and sustains its flow pattern up to the late stage of the compression stroke with the precessing of the swirl centre. Both swirl ratio and swirl centre show significant cyclic variations in the compression process. A low-frequency component with spatial frequency below 0.05 mm-1 (corresponding to a large-scale structure with a spatial scale over 20 mm) is absolutely predominant in the flow field and therefore the low-frequency large-scale flow behaviour determines the basic characteristics of the total in-cylinder flow. The flow field is considerably anisotopic because the integral length scale of any velocity fluctuation components along any direction is different. However, the velocity fluctuation field in the horizontal plane will gradually become homogeneous as the piston moves up in the compression stroke. The integral length scale is in the range of 4-10 mm at an engine speed of 600 r/min. When the engine speed is doubled, flow velocity in the cylinder nearly doubles and velocity fluctuation kinetic energy more than triples though the flow pattern hardly changes.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3