A NN-based attention model for rope vibration prediction and channel sensitivity analysis

Author:

Xu Shuang1,Tao Jianfeng1ORCID,Dong Chang1,Mao Shuai1,Xie Jingren1,Liu Chengliang1

Affiliation:

1. School of Mechanical, Shanghai Jiaotong University, Shanghai, China

Abstract

It is difficult to implement modeling for overall construction due to the complex structure and distinct environmental influences for the high-speed elevator so researchers rarely achieve end-to-end control for vibration suppression. Meanwhile, the dynamic parameters of the hoist component (the hoist rope) contain more environmental disturbance characteristics than the traction machine. In this paper, a sensitivity analysis of data channels of hoist rope that can help to clarify the effective control loop based on experimental results is implemented. The authors combined a neural network-based (NN-based) regression model and attention module for predicting hoisting rope vibration to achieve over 95% accuracy, and determine the channel data that contributes most to vibration prediction.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

Reference32 articles.

1. Ming C, Hong Z, Zhang H. Elevator and elsclateor-principle, structure, installation and test. Shanghai: Shanghai Jiao Tong University Press Co. Ltd, 1995. pp.1–10.

2. Experimental study of the tribological properties of an elevator’s brake linings

3. Mechanical behavior of hoisting rope in 2 km ultra deep coal mine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3