Unsupervised domain adaptation bearing fault diagnosis method based on joint feature alignment

Author:

Xiaoliang Feng1,Zhiwei Zhang1,Aiming Zhao1

Affiliation:

1. School of Electrical Engineering, Shanghai Dianji University, Shanghai, China

Abstract

In this paper, the issue of cross-condition fault diagnosis of bearing is studied. During actual operation, the conditions of bearing vary due to changes in factors such as rotation speed and load, and the data distribution between different working conditions varies. Deep learning models that perform well in one condition are not ideal when applied to another condition directly. To address this problem, a novel unsupervised domain adaptation fault diagnosis method based on joint feature alignment is proposed in this paper. 1D-CNN is used as a weight-shared feature extractor to extract the features from both the source and target domains. The discrepancies in marginal and conditional distributions between the source and target domains are comprehensively considered by multi-layer multi-bandwidth Cauchy kernel maximum mean discrepancy (MB-CMMD) and mutual information (MI). The domain drift is reduced by aligning the feature representations of source and target domains. The network after feature alignment demonstrates a notable enhancement in the diagnostic accuracy of unlabeled samples within the target domain. The experimental results demonstrate that, in comparison to other domain adaptation approaches, The proposed approach can significantly enhance the accuracy of fault diagnosis while realizing feature alignment.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3