New models for depicting corrosion fatigue behaviour and calendar life of metallic structural component

Author:

Fu Yu1,Xiong Junjiang1,Shenoi R Ajit2

Affiliation:

1. School of Transportation Science and Engineering, Beihang University, Beijing, PR China

2. Southampton Marine and Maritime Institute, University of Southampton, Southampton, UK

Abstract

New [Formula: see text] surface model is proposed for depicting corrosion fatigue behaviour and novel formulae are derived to estimate the parameters of proposed model by best fitting from a minimal experimental dataset of corrosion fatigue tests. From the Palmgren–Miner rule, a cumulative damage model for the alternation between corrosion and fatigue is developed to evaluate calendar life of metallic structural component. Corrosion tests are conducted on unnotched and notched specimens from LD10CS aluminium alloy and 15CrMnMoVA alloy steel in artificial corrosion environments. Fatigue tests are also performed on corroded specimens subjected to constant amplitude loading and the interaction mechanisms between corrosion and fatigue are deduced from fractographic studies. The applicability of the new models has been shown for experimental datasets for depicting corrosion fatigue behaviour and for evaluating calendar life of motor brace rod in helicopter.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3