Heat transfer analysis of ethylene glycol-based Casson nanofluid around a horizontal circular cylinder with MHD effect

Author:

Alwawi Firas A12ORCID,Alkasasbeh Hamzeh T3,Rashad AM4ORCID,Idris Ruwaidiah1

Affiliation:

1. School of Informatics and Applied Mathematics, Universiti Malaysia, Kuala Nerus, Terengganu, Terengganu, Malaysia

2. Department of Mathematics, College of Sciences and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia

3. Department of Mathematics, Faculty of Science, Ajloun National University, Ajloun, Jordan

4. Department of Mathematics, Aswan University, Faculty of Science, Aswan, Egypt

Abstract

In this work, efforts were taken to investigate the free convection of ethylene glycol-based Casson nanofluid and it is affected by a magnetic field about a horizontal circular cylinder. Three different types of oxide nanoparticles were used along with constant wall temperature. Tiwari and Das's nanofluid model was used to investigate the MHD free convective flow of Casson nanofluid. The transformed governing PDEs were solved via the Keller box method. Numerical and graphical findings were acquired by using MATLAB software, in addition to studying and analyzing the influence of related parameters, on the velocity, temperature, local skin friction coefficient, and local Nusselt number. The results demonstrate that copper oxide ethylene glycol-based Casson nanofluid has the lowest local Nusselt number, velocity and, it has the highest temperature. Also, our results were in excellent agreement with prior published results.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3