Artificial neural network-based sound insulation optimization design of composite floor of high-speed train

Author:

Li Ye1ORCID,Zhang YuMei2,Wang RuiQian3,Tang Zhao4

Affiliation:

1. School of Automotive and Traffic Engineering, Jiangsu University of Technology, Changzhou, China

2. College of Air Traffic Management, Civil Aviation Flight University of China, Guanghan, China

3. School of Mechanical Engineering and Rail Transit, Changzhou University, Changzhou, China

4. School of Rail Transportation, Soochow University, Suzhou, China

Abstract

Increasing the speed of high-speed trains requires the lightweight design of vehicles to meet the economic and ecological efficiency requirements of such trains. However, these objectives conflict with the interior noise control in high-speed trains because the sound insulation of panel structures follows the mass law principle. The train floor, the main train body structure of the high-speed train, is vital for interior noise control because its sound insulation performance directly affects the interior noise levels. Owing to the complexity of the composite floor system, reliable measurement and accurate estimation of its sound insulation performance are often time-consuming and laborious. To address this situation, this study proposes an artificial neural network (ANN)-based model to predict the sound insulation characteristics of a composite floor. First, a sound insulation model of the composite floor is built based on statistical energy analysis (SEA). The sound insulation performance of 200 cases of composite floors is calculated by varying the dimensions of the extruded floor, thickness of the webs, sound-absorbing material, and wooden floor to formulate a sound insulation database of composite floors. Next, an ANN model is introduced and trained on the sound insulation database. The sound insulation prediction results obtained using the ANN model are compared to the prediction results obtained using the experiment to validate its effectiveness. Subsequently, the NSGA-II optimization method is used to optimize the sound insulation structure of the composite floor. Compared with the regular composite floor structure, the optimized structure reduced the mass of the composite floor by 10.93 kg and increased the weight of the sound insulation ( Rw) by 6.3 dB. The proposed method can be an effective, economical, and efficient tool for vehicle designers and can help promote the sound insulation optimization design of high-speed train composite floors.

Funder

The Fundamental Research Funds for the Central Universities

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3