Numerical investigation on the cyclic behavior of smart recentering clip-angle connections with superelastic shape memory alloy fasteners

Author:

Hu Jong Wan1,Kim Dong Keon2,Choi Eunsoo3

Affiliation:

1. Department of Civil and Environmental Engineering, College of Urban Science, University of Incheon, Incheon, Republic of Korea

2. Sustainable Building Research Center, Hanyang University, Ansan, Republic of Korea

3. Department of Civil Engineering, Hongik University, Seoul, Republic of Korea

Abstract

Superelastic shape memory alloy materials have become increasingly prevalent for recentering devices that have the ability to recover their plastic deformation automatically. For this reason, this study proposed new clip-angle connections incorporating superelastic shape memory alloy bolts. Including component spring models, mechanical joint models of steel bolted connections and shape memory alloy bolted connections are created for numerically simulating their cyclic behavior. The numerical analysis results are then compared to each other in terms of ultimate strength, energy dissipation, and permanent deformation. In particular, over 60% of the total displacement was recovered during unloads in case of shape memory alloy bolted connections, indicating that the proposed smart connections display obvious recentering features in their behaviors.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3