A literature review on Al-Si alloy matrix based in situ Al-Mg2Si FG-composites: Synthesis, microstructure features, and mechanical characteristics

Author:

Ram Subhash Chandra1,Chattopadhyay Kausik2,Bhushan Awani3

Affiliation:

1. Department of Mechanical Engineering, Tula’s Institute, Dehradun, Uttarakhand, India

2. Department of Metallurgical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, India

3. School of Mechanical Engineering (SMEC), Vellore Institute of Technology, Chennai, Tamilnadu, India

Abstract

The current study examined a comprehensive review of the literature on functionally graded composites, particularly Al-Mg2Si in situ metal matrix composites. Functionally graded Al-Si-Mg2Si in situ metal matrix composites are potential materials for meeting a variety of property demands in various components of automotive engines. The in situ formed intermetallic compound Mg2Si in Al-Si matrix exhibits a high melting temperature, low density, high hardness, a low thermal expansion coefficient, and a reasonably high elastic modulus. Due to all of aforementioned characteristics, Mg2Si is an attractive form of reinforcement that can be created in situ using a simple melt reaction approach. However, the coarse size of primary Mg2Si reinforcement in cast composites is a demerit which reduces the strength and ductility of the ultimate composite. Hence several researches have been attempted to refine the primary Mg2Si particles as well as to change the morphology of the eutectic structure. Apart from the monolithic in situ cast composites, attempts have been made to develop functionally graded (FG) composites in which the volume% of segregation of reinforcements are intentionally varied from one surface to another. These types of FG composites are economically developed by centrifugal casting technique in which Mg2Si reinforcements are segregated to inner the surface due to lower relative density with respect to the molten Al matrix. This type of graded microstructure results in higher strength, hardness and wears resistance at the inner surface of the tubular products. The as-cast microstructure and properties are significantly improved by solution treatment and aging. In the last, some of the most recent manufacturing techniques for FG-composites are addressed, along with their benefits, drawbacks, and applications. In general, all cutting-edge and detailed surveys of the present state of knowledge are included in this article.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3