Plastic wrinkling of thin-walled tubes under axial compression in non-uniform temperature field

Author:

Cui Xiao-Lei1,Guo Ju2,Wen Shi-Yu1,Wu Xiu-Min2,Lin Peng2

Affiliation:

1. National Key Laboratory for Precision Hot Processing of Metals, Harbin Institute of Technology, Harbin, Heilongjiang, China

2. College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, China

Abstract

The main purpose of this paper is to reveal the wrinkling behavior of thin-walled tubes under axial compression in a non-uniform temperature field formed by induction heating on a local position. The distribution of non-uniform temperature fields induced by induction heating and the wrinkling behavior of tubes under axial compression were studied by combining experiments and simulations. Moreover, the thickness and hardness distribution of the wrinkled tube were analyzed. The results show that the maximum temperature difference along axial direction of 5052 aluminum alloy and AZ31B magnesium alloy tubes can reach 129.1°C and 134.7°C in experiments, respectively. In the non-uniform temperature field with a maximum temperature of 250°C, axisymmetric wrinkles can be formed under axial compression on the tubes. With the increase of axial compression, the wrinkle width gradually decreases and its height gradually increases. The contour shape of wrinkles can be fitted accurately with GaussAmp function. There is an obvious thickening phenomenon on the wrinkles and the thickest point is located on the wrinkle top, where the thickness gradually increases with increasing the axial compression. In addition, the microhardness at the wrinkles is lower than that of the original tubes. It decreases with the increase in axial compression. The maximum reduction of microhardness of 5052 aluminum alloy and AZ31B magnesium alloy tubes at the wrinkles are 41.6% and 17%, respectively. This study not only can provide tube blank with useful wrinkles for hydroforming, but also can provide experimental data for establishing buckling theory of inhomogeneous tube shells.

Funder

Heilongjiang Postdoctoral Fund

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hydroforming process of thin-walled tubular components with multiple local bulges;Archives of Civil and Mechanical Engineering;2023-06-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3