Experimental investigation into the effect of chatter on surface micro-topography of gears in grinding

Author:

Liu Yao12,Wang Xiufeng12,Lin Jing23,Zhao Wei4

Affiliation:

1. School of Mechanical Engineering, Xi’an Jiaotong University, Shaanxi, China

2. Shaanxi Key Laboratory of Mechanical Product Quality Assurance and Diagnostics, Xi'an Jiaotong University, Shaanxi, China

3. State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Shaanxi, China

4. Qinchuan Machine Tool & Tool Group Share Co., Ltd, Baoji, Shaanxi, China

Abstract

Chatter affects the surface topography and functional performance of work pieces significantly. The surface topography of work pieces is multi-scale, and the characteristics of different levels of the surface topography are closely connected to the different functional performance of the work piece. The relationship between chatter vibration and surface micro-topography is complicated and not specified. By investigating and understanding this relationship clearly, the manufacturing process can be directed to be controlled more actively and accurately, which helps complete the product with expected surface topography and functional performance. This paper aims to reveal the effect of chatter on the surface micro-topography of gears in grinding. Grinding processes considering different machining states and surface topographies of gears under each process were analyzed comprehensively. The following findings were observed. First, chatter causes significant increase of the tooth flank surface roughness in low frequency and increase of the profile roughness, whereas in a different manner in the different gear flank directions. Second, the influence of chatter mainly concentrates on certain frequency bands of the surface topography, and the effect of chatter on the 3D surface topography is within a frequency range. Third, chatter vibration with its multi-frequency-band characteristics shows a multi-scale influence on the work piece surface topography. The possible mechanisms for the formation of these effects were also discussed.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3