Strength-based design of a fertilizer spreader chassis using computer aided engineering and experimental validation

Author:

İrsel Gürkan1ORCID

Affiliation:

1. Department of Mechanical Engineering, Faculty of Engineering, Trakya University, Edirne, Turkey

Abstract

In this research, stress measurement tests and advanced application algorithms based on computer-aided design and engineering (CAD and CAE) were developed and tested. The algorithm was put implemented through a case study on the strength-based structural design and fatigue analysis of a chassis. This algorithm consists of numerical and experimental methods and additionally includes material tests, three-dimensional CAD, a finite element method (FEM)-based analysis procedures, a structural optimization strategy, prototype production, stress tests, a fatigue analysis, and design verification procedures. In the optimization study targeting the optimum chassis weight/strength ratio, two chassis prototypes, with 8 mm and a 5 mm wall thicknesses, were manufactured to verify the structural analysis and experimental tests. As a result of the FEA analyses, for 20 kN, which is the target load value of the chassis, for chassis thicknesses t = 5 mm and t = 8 mm, the maximum tensile strength was obtained as 93 MPa and 83 MPa, respectively. Thus, the material gain of 35.85 kg mass was achieved, and chassis utilization efficiency was increased. This research provides a useful methodology for experimental and advanced CAE techniques, especially for further research on complex stress and deformation analysis of chassis that are desired to be of optimum weight/strength ratio.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on Computer-Aided Design (CAD) in Process Equipment Design;Lecture Notes on Data Engineering and Communications Technologies;2024

2. Design of a precision planter chassis using computer-aided engineering and experimental validation;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2023-03-21

3. Experimental, analytical, and numerical investigations on the flexural and fatigue behavior of steel thin-walled X-section beam;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2022-07-06

4. Effects of modification on the strength–weight ratio of standard bevel gears;Mechanics Based Design of Structures and Machines;2021-08-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3