Tool path generation for fabricating optical freeform surfaces by non-resonant three-dimensional elliptical vibration cutting

Author:

Jieqiong Lin1,Yingchun Li12,Xiaoqin Zhou2

Affiliation:

1. College of Mechatronic Engineering, Changchun University of Technology, Changchun, PR China

2. College of Mechanical Science and Engineering, Jilin University, Changchun, PR China

Abstract

Optical freeform surfaces on difficult-to-machine materials are used widely in a range of areas such as optical engineering, semiconductor and biomedical products. However, it is a challenge to achieve both a high surface quality and complex surface shape because of their tendency of being damaged in brittle fracture in the machining process. In this article, non-resonant three-dimensional elliptical vibration cutting method is proposed to obtain optical freeform surfaces of some difficult-to-machine materials, which is realised by making the diamond tool vibrate at a three-dimensional ellipse in the non-resonant manner. The elliptical motion parameters of this method can be taken active control under different machining conditions, which can make us get optimal cutting performance. Based on this new elliptical vibration cutting method, the algorithm of the tool path generation considering the tool arc radius compensation is proposed, which can avoid excess turning. The three-dimensional surface topography prediction model is established to verify the tool path. Simulation analysis on a typical optical freeform surface, toric surface, has shown that the tool path generation algorithm with the proposed elliptical vibration cutting method can envelope the toric surface, which has illustrated the validity of the proposed algorithm and technique. The tool path generation algorithm can be used to direct one to machine the optical freeform surface in the cutting experiments.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3