Numerical and experimental investigation of notch-induced high-speed precise shearing of 42CrMo bar

Author:

Dong Yuanzhe1,Ren Yujian1,Jiang Hong1ORCID,Zhang Shuowen1ORCID,Zhao Shengdun1ORCID

Affiliation:

1. School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China

Abstract

A notch-induced high-speed precise shearing method was developed for high-strength metal bars, which prefabricated V-shape circumferential notches in batch on the bar surface to make stress concentration, and applied a high-speed load to complete separation on a new type of electric-pneumatic counter hammer. The FE simulation and experimental tests were conducted; the influences of loading speed, notch depth, and axial clearance were analyzed on the fracture behavior and blank quality; the microfracture mechanism was further investigated. The results showed that the circumferential notch inhibited the plastic distortion and obtained high precision chamfered billets, with a roundness error of 1.34%, flatness error of 0.34 mm, and incline angle of 0.87°. Besides, the surface notch effectively reduced Max. impact force and fracture energy. The fractography revealed that: for the notched bar, the cracks initiated from the thin extrusion layers at the bilateral-notch tips, and from micro extrusion and intrusion at the top-notch tip. The predominant microfracture mechanism involves microvoid coalescence and forming of quasi-parabolic dimples along with the shear stress.

Funder

National Key Research and Development Program of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3