State recognition method for machining process of a large spot welder based on improved genetic algorithm and hidden Markov model

Author:

Wang Bing12,Yan Ping12,Zhou Qiang12,Feng Libing3

Affiliation:

1. State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing, China

2. Chongqing Engineering Research Center of Network Manufacturing, Chongqing University, Chongqing, China

3. China CNR Changchun Railway Vehicles Co., Ltd, Changchun, China

Abstract

Large spot welder is an important equipment in rail transit equipment manufacturing industry, but having the problem of low utilization rate and low effectlvely machining rate. State monitoring can master its operating states real time and comprehensively, and providing data support for state recognition. Hidden Markov model is a state classification method, but it is sensitive to the initial model parameters and easy to trap into a local optima. Genetic algorithm is a global searching method; however, it is quite poor at hill climbing and also has the problem of premature convergence. In this paper, proposing the improved genetic algorithm, and combining improved genetic algorithm and hidden Markov model, a new method of state recognition method named improved genetic algorithm–hidden Markov model is proposed. In the proposed method, improved genetic algorithm is used for optimizing the initial parameters, and hidden Markov model as a classifier to recognize the operating states for machining process. This method is also compared with the other two recognition methods named adaptive genetic algorithm–hidden Markov model and hidden Markov model, in which adaptive genetic algorithm is similarly used for optimizing the initial parameters, however hidden Markov model (in both methods) as a classifier. Experimental results show that the proposed method is very effective, and the improved genetic algorithm–hidden Markov model recognition method is superior to the adaptive genetic algorithm–hidden Markov model and hidden Markov model recognition method.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3