Perturbation analysis of the two-to-one internal resonance of planetary gear trains

Author:

Xun Chao1ORCID,Dai He2,Long Xinhua2,Bian Jie3

Affiliation:

1. School of Mechanical Engineering, Nanjing Institute of Technology, Nanjing, P.R. China

2. State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, P.R. China

3. Key Laboratory of Aero-engine Vibration Technology, AECC Hunan Aviation Powerplant Research Institute, Zhuzhou, P.R. China

Abstract

In this study, the two-to-one internal resonance between the first two rotational modes of planetary gear trains (PGTs) is investigated. A purely rotational model is applied considering mesh stiffness variations, tooth separations, and tooth profile modifications (TPMs). Semi-analytical solutions for the internal resonance case are obtained using the method of multiple scales (MMS). The solution equations indicate that the mesh stiffness variations and tooth separations are the main factors causing internal resonance. A validation of the MMS was performed by numerical integration (NI). The results from an example analysis indicate that there exists an internal resonance phenomenon in the case of ωN+2 ≈ ω2, where ω2 and ωN+2 are the natural frequencies associated with the rotational modes, and N is the number of planet gears. Internal resonance in PGTs causes chaos, and part of the energy is transmitted from the ring gear to the sun gear through shocks. Proper TPMs that eliminate the tooth separations could suppress the internal resonance. The internal resonance, in turn, affects the optimal areas of the TPM magnitudes.

Funder

Scientific Research Fund of high-level talents in Nanjing Institute of Technology

National Key R & D Program of China

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3