Affiliation:
1. Key Laboratory of Advanced Ceramic and Machining Technique, Tianjin University, Tianjin, People's Republic of China
Abstract
A ductile failure law and an energy-based failure criterion have been implemented in a 2D finite-element (FE) model to simulate the segmented chip formation process in titanium alloy (Ti–6Al–4V) machining. The variations of stress and strain are taken into account in defining the material failure criterion. The cutting forces and chip morphology calculated by FE model are compared with experimental results in good agreement, validating the FE model. Stresses, strains, cutting temperatures, and stiffness degradation along adiabatic shear bands (ASBs) are analysed during the segment formation process to investigate the segment formation mechanism. It is found that the variation trend of strains is the same as that of temperatures, in addition, the variation of strains and their changing-rate lag slightly behind those of temperatures. These observations provide a new evidence of thermoplastic instability along ASB and increase the understanding of segmented chip formation mechanism. Furthermore, simulation results show that ASB morphology and its forming mechanism are mainly caused by thermoplastic instability in primary deformation zone and friction characteristic in the second deformation zone.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献