Affiliation:
1. Department of Mechanical System Engineering, Kumoh National Institute of Technology, Gyeongbuk, Republic of Korea
Abstract
The effect of angular misalignment between inner and outer raceways on the stiffness characteristics of tapered roller bearings (TRBs) is investigated. A computational procedure is introduced to solve the equations of TRB in the presence of angular misalignment. A dynamic analysis of a spindle supported by TRBs is also performed to investigate the natural frequency behavior by the stiffness variation due to angular misalignment. An extensive simulation demonstrates the effect of angular misalignment on the TRB characteristics such as roller–raceway contact loads, radial and axial displacements, and induced moment load. Computational results show that angular misalignment alters TRB stiffness characteristics and results in the splitting of the spindle natural frequencies by inducing anisotropic behavior of the TRBs. The proposed model and computational procedure are effective in estimating TRB characteristics and thus would aid in selecting TRBs or determining TRB loading conditions in practical applications.
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献