Multi-objective design optimization of additively manufactured lattice structures for improved energy absorption performance

Author:

Gorguluarslan Recep M1ORCID

Affiliation:

1. Department of Mechanical Engineering, TOBB University of Economics and Technology, Ankara, Turkey

Abstract

This paper aims to improve the energy absorption performance of stiffness-optimized lattice structures by utilizing a multi-objective surrogate-based size optimization that considers the additive manufacturing (AM) constraints such as the minimum printable size. A truss optimization is first utilized at the unit cell level under static compressive loads for stiffness maximization and two optimized lattice configurations called the Face-Body Centered Cubic (FBCC) lattice and the Octet Cubic (OC) are obtained. A multi-objective size optimization process is then carried out to improve the energy absorption capabilities of those lattice designs using non-linear compression simulations with Nylon12 material to be fabricated by the Multi Jet Fusion (MJF) AM process. Thin plate spline (TPS) interpolation method is found to produce very high accuracy as the surrogate model to predict the highly nonlinear response surfaces of energy absorption objectives in the optimization. Compared to the lattice designs with uniform strut diameters, by using the optimization process, the maximum energy absorption efficiency ( EAEm) and the crush stress efficiency ( CSE) of the OC lattice design are further improved up to 33% and 37%, respectively. The FBCC lattice design is also found to have superior EAEm performance compared to the existing lattice types considered for fabricating by the MJF process in the literature.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhanced flexural strength-to-weight ratio of Inconel718 lattice structure parts made of powder bed fusion process;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2023-10-21

2. Additive manufacturing of non-uniform scaffolds for mass center control;Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications;2023-10-09

3. Maximizing Energy Efficiency in Additive Manufacturing: A Review and Framework for Future Research;Energies;2023-05-18

4. Additively manufactured materials and structures: A state-of-the-art review on their mechanical characteristics and energy absorption;International Journal of Mechanical Sciences;2023-05

5. Optimization of a land vehicle suspension subjected to a buried charge explosion;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2023-01-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3