Profile design for the cylinder of a double-acting rotary vane compressor

Author:

Song Liquan1,Zeng Liping1,Zhou Jiandong12,Luo Xiao1

Affiliation:

1. The State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing, China

2. Chongqing College of Electronic Engineering, Chongqing, China

Abstract

Inner wall profile of the cylinder in a rotary vane compressor (RVC), which influences the motion characteristics of vanes, suction volume, friction characteristic, etc., plays an important role in the performance of the compressor. This work mainly aims at the profile design of a new cylinder for a double-acting RVC with harmonic profile cylinder on the basis of not changing integrate size. According to the relation between cylinder profile and vane motion characteristics, a method for the cylinder profile design is proposed in this paper. With an assumed vane motion, equations of the cylinder profile, cell volume of the compressor as well as pressure angles between vanes and cylinder inner wall are constructed preliminarily. And then through adjusting parameters and optimization with an independently developed procedure, a new cylinder with the so-called combined profile is obtained. Theoretical analysis of the cell volume variations and the pressure angles between vanes and cylinder are conducted. The results show that there is neither rigid impulse nor soft impulse between vanes and cylinder due to the vane continuous motion including displacement, velocity and acceleration. And the pressure angles between vane and cylinder and working volume of the compressor with the new profile cylinder are superior to harmonic profile cylinder, which is useful for the reduction of friction power in the operation of compressor. Experiments show that the cooling capacity and COP of the test refrigeration cycle with the proposed combined profile cylinder is higher than the compressor with harmonic profile cylinder. And the volumetric efficiency and isentropic efficiency of the compressor with combined profile cylinder have better performance. This method can be applied to the design of the cylinder for multiple-acting rotary vane compressors, rotary vane expanders and vane pumps.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3