Investigation of laminar separation bubble over a supercritical airfoil in an incompressible flow

Author:

Tatar Massoud1,Masdari Mehran1ORCID,Tahani Mojtaba1ORCID

Affiliation:

1. Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran

Abstract

Supercritical airfoils have an unknown behavior at incompressible flow regime and Reynolds numbers lower than those related to their design point at transonic condition. In this work, boundary layer transition is studied over a supercritical airfoil by means of hot-film and pressure measurements completed with numerical simulations. The experiments are performed at chord-based Reynolds number of [Formula: see text]and Mach number of [Formula: see text] at different angles of attack. Hot-film measurement over the upper surface of the supercritical airfoil is carried out and the transition points are computed using the standard deviation of the signals. The upper surface pressure is also recorded and a peak in its second derivative is presented as the transition point generated by the laminar separation bubble mechanism. Moreover, an appropriate time-frequency analysis is applied to the hot-film signals to get an insight into the spectral content and development of the transitional boundary layer structures. On the other hand, two numerical codes are employed and the transition points obtained from numerical simulations are compared with the experimental outcomes. Results express a rapid change of the bubble position over the upper surface, as the angle of attack is increased to the value of [Formula: see text]. Laminar separation bubble is observed in the surface pressure distribution data and is well identified using its second derivative along the streamwise direction. The spectral characteristics of the boundary layer are satisfactorily explored including the streamwise fluctuations within the laminar flow, intermittent behavior of the transitional zone and the wide range of the spectrum in turbulent flow, thanks to the time-frequency analysis. A promising agreement is observed between the transition points computed by both the numerical and experimental studies and confirms the accuracy of findings achieved by the second derivative of surface pressure data, hot-film measurements and the reliability of the employed numerical transition models for optimization studies.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3