Machine learning approach to improve vapor recovery: Prediction and frequency converter with a new vapor recovery system

Author:

Liu Yajun12ORCID,Zhang Shenchao2,Liu Zhendong2

Affiliation:

1. State Key Laboratory of Petroleum Pollution Control, Beijing, P R China

2. School of Mechanical and Automotive Engineering, South China University of Technology, South China University of Technology, Guangzhou P R China

Abstract

In practice, the volatile organic compounds (VOCs) pollution can exist when refueling due to the properties of the gasoline, low viscosity and high saturated-vapor pressure. A new gasoline vapor recovery system involving frequency conversion technology and machine learning is developed to cope with this problem. In the proposed system, firstly, the pumping capacity of the vacuum pump is evaluated, and test shows an almost linear relationship between suction volume and frequency. Then, the Multi-Layer Perception (MLP) neural network and the support vector regression (SVR) are employed to predict the gas-liquid ratio, and the numerical examples are presented to prove the high prediction accuracy of the MLP and SVR, respectively, where the MLP neural network has better generalization ability. Finally, compared with the two gasoline vapor recovery systems based on the 1: 1 fixed control model and the PID control model, respectively, the gasoline vapor recovery efficiency is improved significantly by the new gasoline vapor recovery system.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3