Tooth modification and loaded tooth contact analysis of China Bearing Reducer

Author:

Sun Xiaoxiao12ORCID,Han Liang2ORCID,Wang Jian3

Affiliation:

1. School of Mechanical Engineering, Nanjing Institute of Technology, Nanjing, China

2. School of Mechanical Engineering, Southeast University, Nanjing, China

3. Jiangsu United Transmission Machinery Co., Ltd, Yangzhou, China

Abstract

China Bearing Reducer (CBR) is a one-stage cycloid speed reducer, which has the advantages of large transmission ratio, large load, high precision, high stiffness, and compact structure. The profile modification quality and manufacturing error of cycloid gear are the key factors affecting the transmission accuracy. In this paper, the structure of CBR is introduced first. By means of tooth contact analysis, a new parabolic profile modification method is proposed to improve the transmission accuracy. Then, by using Hertzian contact theory, force equilibrium equations and deformation compatibility conditions, a loaded tooth contact analysis algorithm of CBR is proposed to analyze the loaded transmission characteristics. According to the designed manufacturing error, the objective function is established to minimize the transmission error under nonload condition, and the particle swarm optimization algorithm is used to solve the optimal modification coefficients. Finally, the CBR25 is manufactured with the optimum modification coefficients, and the manufacturing error is measured in coordinate measuring machine to verify that it meets the design requirements. The optimal modification coefficients of CBR25 under nonload are solved based on particle swarm optimization model. Then the optimal modification coefficients are substituted to loaded tooth contact analysis to analyze the meshing contact force, contact deformation, and transmission error of CBR25. The transmission error of the CBR25 is tested on the testing rig. The error between the measured results and the calculated results of loaded tooth contact analysis is within 5%, which shows the correctness of the loaded tooth contact analysis algorithm. At the same time, the operation stability of the CBR25 is improved by using the optimal modification method.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3