The sensibility on dynamic characteristics of pre-pressure thin-wall pipe under elastic boundary conditions

Author:

Chaofeng Li1,Qiansheng Tang1,Boqing Miao1,Bangchun Wen1

Affiliation:

1. School of Mechanical Engineering & Automation, Northeastern University, Shenyang, China

Abstract

Consideration is given to dynamic behavior of cylindrical pressure pipe with elastic boundary conditions. Based on Sanders’ shell theory and Hamilton principle, the system equations are established for integrating the uniform distributed pressure into the elastic boundary condition. In the analytical formulation, the Rayleigh–Ritz method with a set of displacement shape functions is used to deduce mass, damping, and stiffness matrices of the pipe system. The displacements in three directions are represented by the characteristic orthogonal polynomial series and trigonometric functions which are satisfied with the elastic boundary conditions, which are represented as four sets of independent springs placed at the ends including three sets of linear springs and one set of rotational spring. The pressure pipe always suffers a uniform distributed pressure in radial direction. To verify the accuracy and reliability of the present method, several numerical examples with classical boundary condition, including free and simply supported supports are listed and comparisons are made with open literature. Then the influences of boundary restraint stiffness and the distributed pressure on natural frequency and the forced vibration response are studied: The natural frequencies increase significantly as the restraint stiffness or the distributed pressure increases. Compared to the rotational spring stiffness, the stiffnesses of axial, radial, and circumferential springs have more significant effect on natural frequency. And the lower modes are more sensitive on restraint stiffness than higher modes. But the variation of natural frequency with respect to the spring stiffness decreases monotonically with the increasing distributed pressure. The forced vibration response is also affected by the restraint stiffness.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3