Review of experimental Richtmyer–Meshkov instability in shock tube: From simple to complex

Author:

Zhai Zhigang1,Zou Liyong2ORCID,Wu Qiang2,Luo Xisheng1

Affiliation:

1. Advanced Propulsion Laboratory, Department of Modern Mechanics, University of Science and Technology of China, Hefei, China

2. Laboratory for Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, China

Abstract

Richtmyer–Meshkov (RM) instability is regarded as a central role for understanding the hydrodynamic processes involved in inertial confinement fusion, supersonic combustion and supernova explosion. Because of its academic implication and engineering applications, the RM instability has received much attention since it was proposed. As an important tool for studying RM instability, shock tube experiment on shock–fluid interface interaction has been widely adopted and great progress has been achieved in past decades. The generation of a shock wave, the formation of an initial interface and the diagnostic of flow field are the three elements for studying the RM instability experimentally. This review surveys the advances in experimental investigations of RM instability in shock tube environment. Originating from a simple configuration as a planar shock interacting with a simple perturbed interface, the experimental study of RM instability approaches more complex situations like a convergent shock with a simple interface, or a planar shock with a complex interface. It is then expected that the experimental study on the real circumstance may be realized by using a complex shock with a complex interface. Finally, we propose the following issues for future study: (1) evolution of the RM instability induced by cylindrically converging shock waves; (2) effect of the three dimensions on the RM instability; (3) interaction of perturbed shock wave with an initially uniform or perturbed interface; and (4) formation and mixing mechanism of the compressible turbulence in the final stage of the RM instability.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3