Affiliation:
1. School of Mechanical Engineering, Shiraz University, Shiraz, Iran
Abstract
In this paper, energy harvesting from nonlinear vibration of a functionally graded beam covered by a piezoelectric patch under multi-moving oscillators is studied. The material of both the substructure and the piezoelectric patch is assumed to be functionally graded in the thickness direction. A coupled system of equations considering Euler-Bernoulli beam theory and von-Karman nonlinearity as well as electromechanical coupling are derived using the generalized Hamilton’s principle. Finite element method as well as Newmark time integration scheme are used to solve the coupled nonlinear time dependent problem. The effects of different parameters including material distribution, velocity of the moving oscillators, piezoelectric patch thickness and load resistance on the output voltage and harvested power are investigated. Moreover, the effects of oscillator characteristics such as damping ratio and stiffness on the nonlinear behavior of the beam and harvested power are also studied. Results indicate that the aforementioned parameters have considerable effects on the harvested power. It is also shown that ignoring nonlinear effects may lead to erroneous and unacceptable results. To the best of authors’ knowledge, there is no study about energy harvesting from nonlinear vibration of beams under moving oscillators.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献