Probing the stress corrosion cracking resistance of laser beam welded AISI 316LN austenitic stainless steel

Author:

Rajasekaran R1,Lakshminarayanan AK1ORCID

Affiliation:

1. Department of Mechanical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, India

Abstract

The stress corrosion cracking (SCC) resistance of the laser beam welded (LBW) AISI 316LN austenitic stainless steel (SS) was assessed and compared to the base metal (BM). The weld joint was produced using a 2.5 kW laser power source at 1500 mm/min welding speed. Microstructural characterization of the base metal and weld joint were done by the following techniques: (i) Optical Microscopy (OM), (ii) Scanning Electron Microscopy (SEM) and (iii) Transmission Electron Microscopy (TEM). The primary mechanical properties such as strength, toughness and hardness of the welded joint were evaluated and compared with the base metal. Stress Corrosion Cracking (SCC) assessment was done in boiling 45 wt% MgCl2 solution at constant load condition as per American Society for Testing and Materials (ASTM) standard G36-94. From the SCC experiment data, steady-state elongation rate ([Formula: see text]), transition time ([Formula: see text]) and time to failure ([Formula: see text]) were found and generalized equations to predict the time to failure of the base metal and LBW joint were successfully derived. The passive film rupture mechanism majorly influenced the SCC failure for 316LN and welded joint. The formation of the discontinuous δ-ferrite network, residual stress and nitrogen pore nucleation at the fusion zone of the LBW joint deteriorated the SCC resistance. The metallographic and fractographic studies revealed brittle transgranular SCC failure of the base metal as well as the LBW joint in all the stress conditions.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3