Affiliation:
1. Department of Production Engineering, Veer Surendra Sai University of Technology, Burla, Odisha, India, 768018
Abstract
The strength of the conventional composite plates can be enhanced by the use of additional fillers. These composite plates are often subjected to dynamic loading conditions which necessitate the study of their static and dynamic behavior. In this study, laminated composite plates (LCP) are fabricated by open layup process with epoxy as a base resin, E-glass fiber as reinforcement, and fillers: flyash and graphene. The fillers are included in order to improve the mechanical properties of the composite. The filler content in the composite is limited to 5% of the total volume. The weight percentage of fiber combined with fillers, treated as reinforcing constituents is limited to 60%. Graphene and flyash are added in different proportions to develop different kinds of LCPs. The free and forced vibrations of LCPs (using simple support end conditions) are measured by an indigenously developed low-cost vibration testing module. The experimental results have been used to validate the results obtained from the mathematical modeling by using fifth-order shear deformation theory and finite element approaches. Additionally, the effect of existing discontinuity in the LCP is studied. Circular holes of different dimensions at different locations are simulated in the numerical model and the consequences on modal frequencies are analyzed.
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献